Nedir.Org *
Sponsorlu Bağlantılar
Zeus

Depremin Şiddeti Nedir Nedir

Sponsorlu Bağlantılar
Sponsorlu Bağlantılar

Resim Ekle Dosya Ekle Video Ekle Soru Sor Bilgi Ekle

Depremin Şiddeti


Depremin yer yüzeyindeki etkileri depremin şiddeti olarak tanımlanır. Şiddetin ölçüsü, insanların deprem sırasında uykudan uyanmaları, mobilyaların hareket etmesi, bacaların yıkılması ve toplam hasar gibi çeşitli kıstaslar göz önüe alınarak yapılır. Şiddeti tanımlamak için birçok ölçek geliştirilmiştir. Bunlardan en yaygın olarak kullanılanı Değiştirilmiş Mercalli Şiddet Ölçeğidir (Modified Mercalli (MM) Intensity Scale). Bu ölçek, Romen rakamları ile belirlenen 12 düzeyden oluşur. Hiçbir matematiksel temeli olmayıp bütünü ile gözlemsel bilgilere dayanır.

Depremin Büyüklüğü ve Şiddeti


Depremin gücü ya da "boyutu" iki yolla ölçülüyor. Bunlardan birisi depremin "şiddetini" diğeri ise "büyüklüğünü" ölçmeye yönelik. Şiddet ve büyüklük kavramları sık sık karıştırılır ve yanlış kullanılır. Doğru kullanım medya ya da basının değil kuşkusuz uzmanların söylediğidir. Depremin ne tür ve ne kadar zarar verdiğini ölçmeyi amaçlayan, yani depremin insanlar, binalar ve doğa üzerindeki etkilerini saptayan yöntem aslında "şiddet" ölçümü. Şiddet, depremin kaynağındaki büyüklüğü hakkında matematiksel bir bilgi vermez, yalnızca deprem nedeniyle oluşan hasarı yansıtır.

Bir deprem oluştuğunda, bunun herhangi bir noktadaki şiddetini belirlemek için, o bölgede oluşan etkiler gözlenir. Bu gözlemlerin, Şiddet Cetveli'nde hangi şiddet derecesi tanımına uygun olduğuna bakılarak romen rakamlarıyla belirtilen bir rakam atanır. Bunun için, değiştirilmiş "Mercalli" ve "Medvedev-Sponheur-Karnik" şiddet cetvelleri olmak üzere iki ölçek kullanılıyor. Her iki cetvelde de XII şiddet derecesi var. Bu cetvellere göre, şiddeti V ve daha küçük olan depremler genellikle yapılarda hasar oluşturmazlar ve insanların depremi hissetme şekillerine göre değerlendirilir. VI-XII arasındaki şiddetler ise, depremlerin yapılarda oluşturduğu hasar ve arazideki kırılma, yarılma gibi bulgulara dayanılarak değerlendirilir.

Şiddet değerleri, Dünya üzerindeki deprem bölgelerinde yaygın olarak rapor edilse de, çok doğru sonuçlar vermeyebilir. Hasar genel olarak depremin merkez üssünden uzaklaştıkça azaldığı için aynı deprem için farklı bölgelerde farklı şiddet değerleri saptanabilir. Hatta, farklı binalarda, farklı zeminlerde bile değişiklik gözlenir. Bina tasarımları, merkez üssünden uzaklık, zemin malzemesinin türü gibi etkenler hasarın miktarını dolayısıyla şiddet değerlendirilmesini etkiler. Diğer önemli etkenlerden biri de hasarın rapor edilmesi. İnsanlar farkında olarak ya da olmayarak hasarı abartabilir ve yanlış şiddet değerlendirmeleri yapılabilir. Çünkü değerlendirme için herhangi bir aygıt kullanılmaz. Bu nedenle, hasarın gözlenemediği yerlerde şiddet değerlendirmesi yapmak olanaksız. Yani Dünya üzerinde depremin etkilediği her yer için bir şiddet değeri verilemez.

Depremin gücünü ölçmedeki ikinci yöntem, depremle ortaya çıkan enerji miktarının ölçülmesine dayanıyor. Bu yöntemde ölçülen asıl olarak şiddet değil "büyüklük" (yani "magnitüd"). Bunun için, sismogram üzerindeki titreşimlerin genliğinden yani dalganın kâğıt sismogram üzerindeki yüksekliğinden yararlanılır. Deprem ne kadar büyükse, yer o denli fazla sallanır ve sismogramda da o kadar büyük genlikli titreşimler kaydedilir. Sismogram üzerinde kaydedilmiş belli bir dalganın genlik ölçümünden, sismografın tipine göre düzeltme yapıldıktan ve depremin uzaklığı belirlendikten sonra, depremin büyüklüğünü veren bir rakam atanır. Bu, depremle açığa çıkan enerjinin ölçümüdür.

"Büyüklük" tanımı ilk olarak, 1935 yılında, Kaliforniya Teknoloji Enstitüsü'nden Charles F. Richter tarafından yapıldığı için bu ölçümde kullanılan ölçek Richter'in adıyla anılıyor. Richter, merkez üssünden 100 km uzaklıkta ve sert zemine yerleştirilmiş özel bir sismografla kaydedilmiş zemin hareketinin mikron cinsinden ölçülen maksimum genliğinin 10 tabanına göre logaritmasını bir depremin "büyüklüğü" olarak tanımladı. "Richter Ölçeği" bu standartı temel alıyor ve 0'dan 8,9'a kadar olan rakamlarla belirtiliyor. Ayrıca bu rakamlar kesirli değerler de alabiliyor. Rakamlar büyüdükçe depremin büyüklüğü de "logaritmik" olarak artar.

Richter ölçeğindeki en düşük sınır aslında "0" değil. Negatif değerlere sahip çok küçük depremler de olabiliyor, fakat bu türden depremlere çok ender rastlanıyor. Şimdiye dek ölçülmüş en büyük değer ise 8,9. Bu ölçek kullanılarak yapılan ölçümlerde, büyüklüğü 9 ve üzerinde olan değerler, kayaların dayanıklılık sınırları nedeniyle mümkün görünmüyor.

Büyüklük ölçmek için, bugün değişik yöntemler kullanılıyor. Geniş bölgelerde kullanılabilen ölçekler için farklı sismik dalgalardan yararlanılıyor. Dolayısıyla tek bir deprem için bazen birkaç farklı büyüklük olabiliyor. Diğer önemli nokta da, 7'nin üzerindeki büyüklüklerde, sismograf ölçümlerinin kesin olmama eğilimi.

Büyüklüğü ölçmede yeni bir yöntem, depremin "sismik momenti"ni ölçmeye dayanıyor. Bunun için, fay hattı boyunca kaya ötelenmesinin miktarı ve kırığın yüzey alanından yararlanılıyor. Bu yöntemle yapılan moment büyüklükleri 9'dan büyük değerler de alabiliyor. Sismik momente dayalı büyüklük ölçümleri sismogramlardan çok saha çalışmalarından elde ediliyor. Farklı türden büyüklük ölçüm yöntemleri ve değerleri olduğu için özellikle medya tarafından büyüklükle ilgili veri ve bunların yorumu genellikle yanlış aktarılıyor. Unutulmaması gereken, büyüklükle ilgili verilerin yeni ve daha fazla bilgi edindikçe daha kesinleşmesi, bunun haftalarca sürdüğü de olabiliyor.

Richter ölçeğinin en önemli yanı logaritmik olması. Ölçek üzerinde iki ardışık tamsayı arasındaki fark, yer sarsıntısının genliğindeki 10 kat artmaya karşılık geliyor. Bir kaya, büyüklüğü 4 olan bir depremle 1 cm ileri-geri titreşiyorsa, aynı kaya, büyüklüğü 5 olan bir depremde 10 cm'lik titreşimler yapacak demektir. Yerin titreşimindeki bu 10 kat artışın enerji cinsinden karşılığı ise 31,5 katlık bir artış. Örneğin, 5 büyüklüğünde bir deprem 4 büyüklüğündeki bir depremden 31,5 kat daha fazla enerji açığa çıkarır. 6 büyüklüğündeki bir depremde ise 4 büyüklüğündeki depremden neredeyse 1000 kat (31,5x31,5) daha fazla enerji açığa çıkacak demektir.

Depremin gücünü ölçmekte büyüklük ölçümü için bir sismografa gereksinim duyulmakla birlikte, şiddet değerinden çok daha kullanışlı ve güvenilir bir yöntem. Dünya çapında yaygın bir standart sismograf ağı bulunuyor ve bunlar düzenli olarak ölçüm yapıyor. Büyüklük ölçümüyle tek bir deprem için tek bir büyüklük belirlenebilirken, şiddet değerlendirmesiyle tek bir deprem için yerel hasara göre farklı değerler elde edilebiliyor. Üstelik büyüklük ölçümü, şiddet değerlendirmesinin aksine Dünya üzerinde oluşan tüm depremleri kaydedebiliyor.

Sonuç olarak, çok yaygın ve doğru bir deyişle Türkiye gerçekten bir deprem ülkesi! Deprem öncesi ve sonrası yapılması gerekenleri bilmek kadar, artık deprem ve sismoloji alanındaki temel bilgileri öğrenmek de giderek bir gereklilik haline geliyor. En azından, sık sık karşı karşıya kalınan bu doğal felaketi, belki bir anlamda düşmanı iyi tanımak için.

Depremler çok değişik derinliklerde oluşabilir. 0-60 km. arası derinliklerde oluşanlar, sığ depremler olarak adlandırılır ve genelde kıtasal alanlarda (örn. Türkiye) meydana gelir. 60-300 km. derinliklerde oluşanlar, orta derinlikli depremler adıyla anılır ve bir levhanın diğer bir levha altına daldığı bölgelerde (örn. Japonya, Şili) görülür. Derin depremler ise yine aynı bölgelerde levhanın dalan ucunda 300-700 km. derinliklerde oluşan depremlerdir.

Depremlerin büyüklüğü (magnitude) ve şiddeti (intensity) genellikle birbirine karıştırılan iki kavramdır. Büyüklük, deprem sırasında boşalan enerji ile ilişkili bir değerdir ve aletsel olarak ölçülür. Şiddet ise deprem bölgesindeki hasara göre belirlenen göreceli bir değerdir. Büyüklük, deprem kayıt aletlerinde kaydedilen dalga genliğinin logaritmasını içeren bir bağıntı sonucunda, Charles Richter’in geliştirdiği ve Richter Ölçeği denilen bir cetvele göre hesaplanır. Logaritmik olduğu için büyüklükteki 1 birim artış, yer hareketlerinde 10 katlık fark yapmaktadır. Günümüzde birkaç değişik büyüklük hesabı yapılmaktadır.

ŞİDDET ÖLÇEKLERİ

Her hangi bir derinlikte olan depremin, yeryüzünde hissedildiği bir noktadaki etkisinin ölçüsü olarak tanımlanmaktadır. Diğer bir deyişle depremin şiddeti, onun yapılar, doğa ve insanlar üzerindeki etkilerinin bir ölçüsüdür. Bu etki, depremin büyüklüğü, odak derinliği, uzaklığı yapıların depreme karşı gösterdiği dayanıklılık dahi değişik olabilmektedir. Şiddet depremin kaynağındaki büyüklüğü hakkında doğru bilgi vermemekle beraber, deprem dolayısıyla oluşan hasarı yukarıda belirtilen etkenlere bağlı olarak yansıtır.

Depremin şiddeti, depremlerin gözlenen etkileri sonucunda ve uzun yılların vermiş olduğu deneyimlere dayanılarak hazırlanmış olan "Şiddet Cetvelleri"ne göre değerlendirilmektedir. Diğer bir deyişle "Deprem Şiddet Cetvelleri" depremin etkisinde kalan canlı ve cansız her şeyin depreme gösterdiği tepkiyi değerlendirmektedir. Önceden hazırlanmış olan bu cetveller, her şiddet derecesindeki depremlerin insanlar, yapılar ve arazi üzerinde meydana getireceği etkileri belirlemektedir.

Bir deprem oluştuğunda, bu depremin her hangi bir noktadaki şiddetini belirlemek için, o bölgede meydana gelen etkiler gözlenir. Bu izlenimler Şiddet Cetveli'nde hangi şiddet derecesi tanımına uygunsa, depremin şiddeti, o şiddet derecesi olarak değerlendirilir. Örneğin; depremin neden olduğu etkiler, şiddet cetvelinde VIII şiddet olarak tanımlanan bulguları içeriyorsa, o deprem VIII şiddetinde bir deprem olarak tarif edilir. Deprem Şiddet Cetvellerinde, şiddetler romen rakamıyla gösterilmektedir. Bugün kullanılan batlıca şiddet cetvelleri değiştirilmiş "Mercalli Cetveli (MM)" ve "Medvedev-Sponheur-Karnik (MSK)" şiddet cetvelidir. Her iki cetvelde de XII şiddet derecesini kapsamaktadır. Bu cetvellere göre,şiddeti V ve daha küçük olan depremler genellikle yapılarda hasar meydana getirmezler ve insanların depremi hissetme şekillerine göre değerlendirilirler.

VI-XII arasındaki şiddetler ise, depremlerin yapılarda meydana getirdiği hasar ve arazide oluşturduğu kırılma, yarılma, heyelan gibi bulgulara dayanılarak değerlendirilmektedir.

ŞİDDET l: insanlar tarafından hissedilmez, sadece deprem-ölçerler kaydedebilir.

ŞİDDET II: Asılı eşyalar sallanır.

ŞİDDET III: Yapıların içindekiler tarafından hissedilebilir, asılı eşyalar ve duran motorlu araçlar sallanabilir, süresi algılanabilir.

ŞİDDET IVI: Pencere ve kapılar ile duran motoriu araçlar sallanır, duvarlarda gıcırdamalar oluşur, yapıların içinde ve açık alanda hissedilebilir.

ŞİDDET V: Herkes tarafından hissedilebilir, eşyalar düşer, cam eşyalar kırtlır, sıvalar çatlıyabilir/dökülebilir; ağaçlar, direkler ve yüksek binalar sallanır, sallantının yönü izlenebilir; bahçe duvarları yıkılabilir.

ŞİDDET VI: Herkes tarafından hissedilir, yürümek zorlaşır, ağır eşyalar kayar ve kitaplar raflardan dökülebilir, sıvalar dökülür, bazı yapılar yıkılabilir.

ŞİDDET VII: Ayakta durmak güçleşir, eşyalar hasar görür, sıva ve yapı dekorasyon malzemeleri dökülür ve kırılır; yapılarda çatlamalar ve hasar, su birikintilerinde çamurlanma oluşur.

ŞİDDET VIII: Binalarda hasar ve kısmi yıkılma oluşur, su kuleleri ve bacalar yıkılır, ağır eşyalar devrilir; kumlu ve suya doygun zeminlerde sıvılaşma (kum fışkırmaları), yüzeyde faylanmalar ve heyelanlar gelişir; su kaynaklarının debisi ve sıcaklığı değişir.

ŞİDDET IX: Yapıların çoğunda hasar ve yıkılma olur; zeminde büyük çatlak ve yarılmalar ve kum fışkırmaları meydana gelir; yer altı boru sistemleri kırılır.

ŞİDDET X: Yapıların çoğu yıkılır, betonarme yapılarda ağır hasar ve kırılma başlangıcı izlenir, barajlarda büyük hasar ve çatlamalar oluşur, zeminde büyük çatlaklar oluşur, raylar bükülür, kütle kaymaları ve sıvılaşma gelişir.

ŞİDDET XI: Çok az yapı yıkılmadan kalabilir, köprüler yıkılır, yer (kütle) kaymaları oluşur, yer-içi boru sistemlerinin tümü ile devre dışı kalır.

ŞİDDET XII: Tüm yapılar yıkılır, coğrafya değişir, yüzeyde deprem dalgalarının ilerleyişi izlenebilir.

MAGNİTÜD ( DEPREMİN BÜYÜKLÜĞÜ )

Deprem sırasında açığa çıkan enerjinin bir ölçüsü olarak tanımlanmaktadır. Enerjinin doğrudan doğruya ölçülmesi olanağı olmadığından, Amerika Birleşik Devletleri'nden Prof.C.Richter tarafından 1930 yıllarında bulunan bir yöntemle depremlerin aletsel bir ölçüsü olan "Magnitüd" tanımlanmıştır. Prof .Richter, episantrdan 100 km. uzaklıkta ve sert zemine yerleştirilmiş özel bir sismografla (2800 büyütmeli, özel periyodu 0.8 saniye ve %80 sönümü olan bir Wood-Anderson torsiyon Sismografı ile) kaydedilmiş zemin hareketinin mikron cinsinden (1 mikron 1/1000 mm) ölçülen maksimum genliğinin 10 tabanına göre logaritmasını bir depremin "magnitüdü" olarak tanımlamıştır. Bugüne dek olan depremler istatistik olarak incelendiğinde kaydedilen en büyük magnitüd değerinin 8.9 olduğu görülmektedir(31 Ocak 1906 Colombiya-Ekvator ve 2Mart 1933 Sanriku-Japonya depremleri).

Magnitüd, aletsel ve gözlemsel magnitüd değerleri olmak üzere iki gruba ayrılabilmektedir.

Aletsel magnitüd, yukarıda da belitildiği üzere, standart bir sismografla kaydedilen deprem hareketinin maksimum genlik ve periyod değeri ve alet kalibrasyon fonksiyonlarının kullanılması ile yapılan hesaplamalar sonucunda elde edilmektedir. Aletsel magnitüd değeri, gerek hacim dalgaları ve gerekse yüzey dalgalarından hesaplanılmaktadır.

Genel olarak, hacim dalgalarından hesaplanan magnitüdler (m), ile yüzey dalgalarından hesaplanan magnitüdler de (M) ile gösterilmektedir. Her iki magnitüd değerini birbirine dönüştürecek bazı bağıntılar mevcuttur.

Gözlemsel magnitüd değeri ise, gözlemsel inceleme sonucu elde edilen episantr şiddetinden hesaplanmaktadır. Ancak, bu tür hesaplamalarda, magnitüd-şiddet bağıntısının incelenilen bölgeden bölgeye değiştiği de gözönünde tutulmalıdır.

Gözlemevleri tarafından bildirilen bu depremin magnitüdü depremin enerjisi hakkında fikir vermez. Çünkü deprem sığ veya derin odaklı olabilir. Magnitüdü aynı olan iki depremden sığ olanı daha çok hasar yaparken, derin olanı daha az hasar yapacağından arada bir fark olacaktır. Yine de Richter ölçeği (magnitüd) depremlerin özelliklerini saptamada çok önemli bir unsur olmaktadır.


Depremin Şiddeti Nedir Resimleri

  • 4
    Depremin büyüklüğü ve şiddeti tablosu 3 ay önce

    Depremin büyüklüğü ve şiddeti tablosu

  • 3
    Depremin Şiddeti Nedir 3 yıl önce

    Depremin Şiddeti Nedir

  • 2
    Deprem Nasıl Ölçülür 3 ay önce

    Deprem Nasıl Ölçülür

Depremin Şiddeti Nedir Sunumları

  • 3
    Önizleme: 3 ay önce

    Depremin büyüklüğü ve şiddeti kavramları slayt/sunusu (pptx)

    (Göster / Gizle) Sunum İçeriği: Düz metin (text) olarak..
    1. Sayfa
    DEPREMİN ÖLÇÜLMESİ - BÜYÜKLÜĞÜ - ŞİDDETİDepremin oluşumunu, deprem dalgalarının yeryüzünde ve yer içinde ne şekilde yayıldığını, bununla ilgili ölçü aletlerini, yöntemlerini ve deprem ile ilgili diğer konuları inceleyen bilim dalına sismoloji (deprem bilimi) denir. Bu alanda çalışma yapan depremleri inceleyen bilim insanlarına da sismolog (deprem bilimci) denir.

    2. Sayfa
    Depremin büyüklüğü, deprem sırasında yeraltında oluşantitreşimleri kaydeden sismograf (depremölçer) denilen aletle ölçülür, Richter ölçeği ile de belirlenir. Depremin büyüklüğü arttıkça açığa çıkan enerji miktarı da artar.

    3. Sayfa
    Yer altında meydana gelen herhangi bir depremin, yeryüzündeki bir noktada oluşturduğu yıkım, panik, korku gibi etkilerine depremin şiddeti denir. Depremin şiddeti; depremin büyüklüğüne, odak noktasının derinliğine, zemin yapısına ve yapılan dayanıklılığına bağlı olarak değişir. *Depremin büyüklüğü ile şiddeti aynı anlamagelmemektedir. Depremin büyüklüğü ölçülebilirken (sayısal olarak), depremin şiddeti ölçülemez.(depremin verdiğizararın bir ifadesi olduğundan)

  • 2
    Önizleme: 3 ay önce

    Depremin Büyüklüğü ve Şiddeti Kavramları Slayt PPTX Sunum

    (Göster / Gizle) Sunum İçeriği: Düz metin (text) olarak..
    1. Sayfa
    BÜYÜKLÜĞÜNE GÖRE DEPREMLERFay kırılması sonucunda ortaya çok büyük bir enerji çıkar. Bir depremin büyüklüğü, fay kırılması sonucu ortaya çıkan enerjinin büyüklüğü ile ifade edilir.Depremin büyüklüğü, ölçülebilen ve sayı ile ifade edilebilen bir büyüklüktür. Richter Ölçeği ile sınıflamada; Fayın kırılması sonucu ortaya çıkan enerjiye bağlı olarak bir (M) sayısı belirlenir. ADİL ALTUNDALSAYFA1

    2. Sayfa
    DEPREMİN BÜYÜKLÜĞÜDepremde açığa çıkan enerji ile, depremin büyüklüğünü ifade eden M sayısı arasındaki aşağıdaki bağlantı vardır : Log10 E = 11,4 + 1,5*M (Marmara Depremi = 1x1022,5 erg)E: Erg cinsinden Açığa çıkan enerjiM: Richter Şiddeti (Marmara depremi M = 7,4) ADİL ALTUNDALSAYFA2

    3. Sayfa
    ADİL ALTUNDALSAYFA3Deprem Enerjisi ile Richter ölçeği olan M sayısı arasında logaritmik bir bağlantı vardır. Dolayısıyla bu sınıflandırmada yapılarda meydana gelen hasarlar, depremin tesir ettiği alanın büyüklüğü, veya insanların depremi algılamalarındaki farklılıklar dikkate alınmaz.Fay kırılması sonucu ortaya çıkan enerji ne kadar büyükse Depremin Richter ölçeğine göre büyüklüğü de o kadar büyüktür.DEPREMİN BÜYÜKLÜĞÜ

    4. Sayfa
    ADİL ALTUNDALSAYFA4Depremler Büyüklüklerine göre sınıflandırılabilir.Depremler, ortaya çıkan enerjinin büyüklüğüne göre Richter ölçeği esas alınarak sınıflandırılır.Bu sınıflamaya göre Aletsel büyüklüğüne göre depremler 5 gruba ayrılabilir.Her grupta Yapının taşıyıcı sisteminde ne gibi hasarların oluşabileceği tahmin edilmektedir. .DEPREMİN BÜYÜKLÜĞÜ

    5. Sayfa
    M≤5 Taşıyıcı Sistemde önemli hasarlar oluşmaz5<M<6 Deprem odağına yakın yapılarda hasar oluşabilir.6<M<7 Hasar olasılığı yüksektir.7<M<8 Hasar Yaygın olarak görülebilir. M ˃ 8 Yıkıcı depremler ADİL ALTUNDALSAYFA5DEPREMİN BÜYÜKLÜĞÜ

    6. Sayfa
    Aletsel büyüklüğü 8 e eşit ve daha büyük depremler sayılıdır.1960 Şili depremi M = 81964 Alaska depremi M = 81999 Marmara depremi M = 7,4 (Resmi 17.500 Resmi olmayan 50.000)2010 da Şili depremi M=8,8 400 kişi hayatını kaybetmiştir.ADİL ALTUNDALSAYFA6DEPREMİN BÜYÜKLÜĞÜ

    7. Sayfa
    ADİL ALTUNDALSAYFA7Marmara Depreminin büyüklüğü M=7,4 olarak ölçülmüştür.Marmara depreminde ortaya çıkan enerjinin, Hiroşima’da atılan kaç atom bombasına eş olduğu hesabedilebilir.Hiroşima da atılan atom bombası 15 Kiloton TNT ye eşit enerjiye sahiptir.1 Kiloton TNT = 4x1019 erg 15 Kiloton TNT=60x1019 ergMarmara depreminde 1x1022,5 erg enerji açığa çıkmıştır.Hiroşima bombası = 60x1019 erg Marmara Depremi = 1x1022,5 ergİki değer oranlanırsa Marmara depreminde ortaya çıkan enerji 3162 adet Hiroşima bombasında ortaya çıkan enerjiye denk olduğu ortaya çıkar.DEPREMİN BÜYÜKLÜĞÜ

    8. Sayfa
    ADİL ALTUNDALSAYFA8DEPREMİN BÜYÜKLÜĞÜ

    9. Sayfa
    ADİL ALTUNDALSAYFA9ŞİDDETİNE GÖRE DEPREMLERSıradan insanlar enerji birimleri erg, TNT gibi kavramları bilmeyebilir. Ama tüm insanlar deprem sonu meydana gelen hasarları gözleyebilir, bu hasara göre depremin şiddeti hakkında bir şeyler söyleyebilir. Deprem ve deprem sonrası oluşan hasarlar arasında bir ilişki kurulabilir.Depremden sonra yeryüzünde meydana gelene hasarlar gözlenir, meydana gelen hasarlara deprem ile ilişkilendirilip bir cetvel ile ifade edilebilir. Bu cetvelde oluşan hasarların büyüklüğü, sıklığı, nerelerde meydana geldiği dikkate alınarak depremler sınıflandırılabilir.Depremlerin Şiddetlerine göre sınıflandırılması denilir.

    10. Sayfa
    ADİL ALTUNDALSAYFA10Aynı zamanda meydana gelen hasarlar binanın taşıyıcı sistemine , kullanılan malzemeye, işçilik gibi diğer faktörlere de bağlıdır.Bütün bunlar dikkate alınarak, İnsanların kolayca anlayabileceği Mercalli Şiddet Cetveli oluşturulmuştur.Bu hasarları esas alan sınıflandırma Düzeltilmiş Mercalli Şiddet Cetveli olarak geliştirilmiştir.1902 de Mercalli tarafından ortaya atıldı1958 de Wood ve Neuman tarafından düzeltmeler yapıldı1958 de Richter tarafından düzeltilerek son şekli verildi.Bu cetvele göre depremler meydana getirdikleri hasarlar açısından I ile XII şiddetleri arasında sınıflandırılmıştır.DEPREMİN ŞİDDETİ

    11. Sayfa
    ADİL ALTUNDALSAYFA11DEPREMİN ŞİDDETİ

    12. Sayfa
    ADİL ALTUNDALSAYFA12DEPREMİN ŞİDDETİ

    13. Sayfa
    2007 DBYBHY göre yeni binaların tasarımında esas alınacak deprem ŞİDDETLİ DEPREM dir.Şiddetli depremde Can güvenliğinin sağlanması amacı ile; Kalıcı hasar oluşumunun sınırlandırılması esas alınmaktadır.Şiddetli deprem : Bina önem katsayısı I = 1 olan binalar için tasarım depreminin 50 yıllık bir süre içinde aşılma olasılığı %10 olan depremdir. ADİL ALTUNDALSAYFA13DEPREMİN ŞİDDETİ

Depremin Şiddeti Nedir Videoları

  • 8
    3 ay önce

    Depremlerin Büyüklüğü ve Şiddeti Arasındaki Fark Nedir

  • 6
    3 ay önce

    Depremin Şiddetine Göre Etkileri

  • 5
    3 ay önce

    Depremin Şiddeti Nasıl Ölçülür?

Depremin Şiddeti Nedir Soru & Cevap

Bu yazı hakkında ilk soru soran sen ol..

Depremin Şiddeti Nedir Ek Bilgileri

Bu yazıya sende yeni bilgi ekleyerek gelişmesine yardımcı olabilirsin..

Kapak Resmi
Depremin büyüklüğü ve şiddeti tablosu
Yazı İşlemleri
Sen de Ekle

Sende, bu sayfaya

içerik ekleyerek

katkıda bulunabilirsin.

(Resim, sunum, video, soru, yorum ekle..)